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Abstract— This work is devoted to the stabilization of a 

family of multi-model systems. We have chosen to focus on the 

application of Gaussian linear quadratic control on a three 

tank hydraulic system. This controller is based on the LQ 

quadratic linear control as well as the famous Kalman 

observer filter. On the other hand, the application of this 

control is a complicated task because of the nonlinearities and 

the presence of defects. In order to apply our control strategy, 

it consists to represente the non-linear system as a set of several 

linear submodels through a new technique based on  Fuzzy C-

Means and N4Sid identification algorithm. 

Thanks to the Takagi Sugeno representation, the control of the 

system is obtained by combining the stabilizing control laws of 

linear subsystems. 
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I.   INTRODUCTION 

 

. Optimal control problems [2] are encountered in everyday 

life: how to get to a destination as quickly as possible, how 

to minimize consumption. For a given dynamic system 

whose equations are known, the optimal control problem [7] 

is then to find the control that minimizes a given criterion. 

The LQG control [7] has the advantage of applying to 

systems whose condition is not fully measured. Developed 

at the beginning of the second half of the 20th century, it 

emerged as the first general method for the control of 

multivariable systems [1], [3]. Since the 20th century, many 

publications have been published testifying to the success of 

the LQG order. 

The main contribution of our work is to propose a Gaussian 

quadratic linear control for an hydraulic system which is a 

highly nonlinear system. The development of these new 

results is based on the Multi-model approach [4]. 

This controller is developed from a multi-model 

representation of the Takagi-Sugeno [9] form of the system. 

For each linear model on the system reference path, an 

optimal multivariable LQG control law [11], [8] is 

established minimizing a quadratic criterion depending on 

the different control objectives such as uncertain additive 

noise. The control applied to the system is then obtained by 

interpolating the control laws of the different linear 

subsystems. 

Takagi-Sugeno approximation [10] that relies on a bank of 

piecewise linear models to capture the possible input-output 

response behavior has been developed. Using a divide and 

conquer strategy, local linear models set is described and the 

global output is obtained by the integration of locale ones. 

Our approach is based on the fuzzy C-Means (FCM) [5], [6] 

. This algorithm is used to find operators regimes which are 

associated to dynamical linear local models. The clusters are 

formed according to the distance between data points and 

the cluster centers are formed for each cluster through N4sid 

identification approach. The N4SID algorithm [12]  allows 

modeling a system from the measured input and output data. 

it leads to determining the order of the system by applying 

the dominant singular value technique. 

 One of the main advantages of the N4SID is that it is non-

iterative and does not require the involvement of non-linear 

optimization methods. This allows it to overcome the 

problems exposed when applying iterative techniques that 

suffer from the absence of a guarantee of convergence and 

minimization of the criteria mentioned and from the 

sensitivity to the estimation of the initial state.        

These features make the implementation of such method 

provide a system state representation that facilitates the 

implementation of the LQG control. 

This paper is organized as follows. Section 2 is devoted to 

the Fuzzy approach and Takagi-sugeno representation. In 

Section 3 we present our main result in Section 4 which 

introduces the TS fuzzy system subject to define multi-

model LQG controller. An application of the results is made 

on a hydraulic system Section 5. In the end, a conclusion 

will be quoted in Section 6. 

 

 
II.   FUZZY IDENTIFICATION APPROACH 

 

A.  Fuzzy C-Means algorithm: 

 
The first step consists to dividing data elements into classes 

or clusters using FCM algorithm. This algorithm is used for 

analysis based on distance between various input data 

points. The clusters are formed according to the distance 

between data points and the cluster centers are formed for 

each cluster. In fact, FCM is a data clustering technique in 

which a data set is grouped into n clusters with every data 

point in the dataset related to every cluster and it will have a 

high degree of belonging (connection) to that cluster and 

another data point that lies far away from the center of a 

cluster which will have allow degree of belonging to that 
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cluster. 

 

  Algorithmic steps for Fuzzy C-Means. 

 

We are to fixe c where c is ( 2 c n  ) and then select a 

value for parameter “m” and there after initialize the 

partition 
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then we are to stop otherwise. We have to return to step 2 by 

updating the cluster centers iteratively and also the 

membership grades for the data point. 

 

The second step consists to define for each cluster a local 

model using Subspace identification approach N4SID .This 

algorithm is based on the estimation of the state sequence 

matrix to estimate the matrices of the system and Kalman 

gain. One of the major advantages of N4SID is that it is 

non-iterative and does not involve non-linear optimization 

methods. This allows it to overcome the problems presented 

by the application of iterative techniques that suffer from the 

unsecured convergence and the minimization of the target 

criterion as well as the sensitivity to the estimation of the 

initial state . These features make the implementation of 

such a method attractive and provide a system state 

representation facilitating the implementation of the LQG 

command. 

         
B.  Fuzzy Takagi-Sugeno presentation: 

 
A nonlinear dynamic system can be described in a simple 

way by a Takagi-Sugeno fuzzy model, which uses series of 

locally linearized models from the nonlinear system. So any 

TS fuzzy model of a nonlinear system is structured as an 

interpolation of linear systems. The i-th rule is expressed as 

If 1Z  is 
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T-S fuzzy model can be inferred as: 
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An approach to obtain T-S fuzzy model that has been used in 

this work is local approximation in fuzzy partition spaces. In 
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fact, in this method, nonlinear terms have been approximated 

by chosen linear terms. This procedure leads to reduction of the 

number of model rules. The number of model rules is directly 

related to complexity of analysis and design LMI conditions or 

Riccati equation solution. This is because the number of rules 

for the overall control system is basically the combination of 

the model rules and control rules 

 

III.  MULTIMODEL LQG CONTROL DESIGN 

 
Consider the system (13) such that the output and the state are 
disturbed by noise 

1 ( ) ( ) ( ) )  (x t A x t B u t w t    

2( ) ( ) ( ) z t C x t w t                            (13) 

with: dim x(t) = n x 1, dim u(t): l x 1, where l is the number 
of actuators, dim z(t) = m x 1 

1( )w t and
2( )w t are two vectors of Gaussian white noise 

where dim
1( )w t :n x l and dim

2( )w t :m x l. 
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  is a constant variance 

covariance matrix, where the matrices 1v and 2v  are 

positive definite symmetric. 
 

The LQG regulator consists of two parts: an optimal state-

feedback gain and a Kalman state estimator.  

 

 
 

Fig. 1  LQG controller 
 

The feedback gain matrix is sought to minimize a quadratic 

performance criterion J expressed as: 

0

( )  ( ) ( )  ( ){ [ ] }T T

LQG
J E x t Q x t u t R u t dt


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The weighting matrices Q and R are positive definite matrices. 

 

The gain of the feedback    u t Kx t  that minimizes the 

cost function J is: 
1 T

K R B P
                                (16) 

 

 is usually called the LQ-optimal gain, where the matrix P is 

obtained by solving an algebraic Riccati equation: 
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The next step is to derive a state estimator ( )x t   generated by 

Kalman filter. The gain L of the observer is given by 
 

       1
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Where Q is the solution of the following Riccati equation 
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Through TS representation, the fuzzy LQG controller is 
given by: 

1
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i ii
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Where  ( )
i

u t  is the LQG controller for each subsystem. 

 

IV. APPLICATION AND SIMULATION 
 

The nonlinear controlled system consists of three cylinders 

T1, T2 and T3 with the cross-sectional area A which are 

interconnected in series by two connecting pipes. The liquid 

(distilled water) leaving T2 is collected in a reservoir from 

which pumps 1 and 2 supplies the tanks T1 and T2. All 

three tanks are equipped with piezo-resistive pressure 

transducer for measuring the level of the liquid. A digital 

controller controls the flow rate Q1 and Q2 such that the 

levels in the tanks T1 and T2 can be preassigned 

independently. The level in tank T3 is always a response 

which is uncontrollable. The connecting pipes and the tanks 

are additionally equipped with manually adjustable valves 

and outlets for the purpose of simulating clogs as well as 

leaks. 

 
 

Fig. 2  Three thank hydraulic system 
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The flow rates 
1q and 

2q  are defined through the rotational 

flow. The interconnection rates 
13Q et 

32Q depend of levels 

on the tanks. The flow rate
20Q is the output of the system. 

The input vector is given by: 

 

1 2 [ ]T
U Q Q                     (21) 

 

Then, the output vector is given by: 

 

1 2 3] [ T
Y h h h                          (22) 

 

 

The selected nonlinear system composed of three tank 

system, have a measurement data of inputs and outputs. Due 

to its high nonlinearity, and inaccessibility of some its 

outputs and states for measurements, the system is often 

perceived as a challenging engineering problem. In order to 

control the levels in the tanks, the following steps are also 

made: The first step consists to find the local linear models 

for TS fuzzy model through Fuzzy C-means and N4sid 

approach.  
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Fig. 3  fuzzy C-means decomposition. 

 

 
According to Fig. 3, Fuzzy C-means is a suitable method for 

approximation of this system, with this approximation the 

nonlinear and linear parts of the system. Due to the 

decomposition to two regions, we can utilize a LQG controller 

for each local linear model. 

 

Then, the second step consists in the design of a LQG 

controller, which stabilizes the nonlinear fuzzy system. 

 

 
Fig. 4  Fuzzy LQG controller 
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Fig. 5  Time response of the system with the fuzzy LQG 

Controller 

 

 
According to Fig 5 the LQG control provides very good 

performance in terms of good reference tracking, estimated 

response time less than 10 s and there is also no static error. 

LQG controller keeps this stability with different variance of 

the flow rates. 

 

V. CONCLUSIONS 

 

In this work, we proposed Gaussian linear quadratic control 

for a three tank hydraulic system. To handle the problem 

caused by nonlinear data, we choose Fuzzy c-means 

algorithm and N4SID identification approach to define local 

linear models. The Fuzzy LQG control is based on TS 

presentation of the system. The simulations show the 

effectiveness of our approach, the fuzzy LQG control 

ensures the stabilization of the system. One topic for future 

research may be in the use of the subspace identification 

approach to define local linear models. We can use an 

extended Kalman filter to define LQG control and compare 

it with a multi-model adaptive control. 
 

REFECRENCES 

 

 
[1] A.  Boulkroune,   M. Saad and M. Farza, «  Adaptive  fuzzy   

controller  for  Multivariable  nonlinear  state  time-varying  delay  
systems subject to input nonlinearities ».    Fuzzy Sets and Systems, 
In Press 2010. 

[2] D. Subbaram Naidu, « Optimal Control Systems ». CRC Press, 2003 

PC1
Texte tapé à la machine
Copyright 2019
ISSN 2356-5608

PC1
Texte tapé à la machine
International Journal of Control, Energy and Electrical Engineering (CEEE)
Vol.8 pp.7-11

PC1
Texte tapé à la machine
10



[3] E. Ostertag, « Commande et Estimation Multivariables », TechnoSup, 
Ellipses, Paris, 2006. 

[4] G. Li and F. Zhao. « Flexibility control and simulation with multi-
model and LQG/LTR design for PWR core load following 
operation». Annals of Nuclear Energy, Volume 56, June 2013. 

[5] J. Abonyi , R. Babuska and  F. Szeifert,  « Modified  Gath-Geva  

fuzzy  clustering  for  identification of  Takagi-Sugeno  fuzzy  models 
». IEEE  Transactions  on  Systems, Man  and  Cybernetics, Part B: 
Cybernetics, 32(5):612–621.2002. 

[6] V. S. Rao and Dr. S. Vidyavathi, «Comparative Investigations and 
Performance Analysis of FCM and MFPCM Algorithms on Iris data 
», Indian Journal of Computer Science nd Engineering.  

[7] B. Cardenas and M. Molinas, « Optimal LQG Controller for Variable 
Speed Wind Turbine based on Genetic Algorithms », Energy 
Procedia, vol. 20, pp. 207–216, 2012. 

[8] S. Nourdin, H. Camblong, I. Vechiu and G.Tapia, « Comparison of 
wind turbine LQG controllers using individual pitch control to 

alleviate fatigue loads », IEEE conference on control & automation, 
pp. 1591-1596, 2010. 

 

[9] T. Johansen, Shorten and R Murray-Smith, «  On   the   interpretation   

and   Identification  of  dynamic  Takagi-Sugeno  fuzzy  models  ».  
IEEE  Transactions   on   Fuzzy  Systems, 8(3):297–313.2000. 

[10] T. Takagi and M. Sugeno,  « Fuzzy  identification  of  systems  and  
its  application  to  modeling and control ». IEEE Transactions on 
Systems, Man  and  Cybernetics,  15:166–172.1985. 

[11] X. Yang and  O. Marjanovic, « LQG  Control  with  Extended  
Kalman  Filter  for    Power Systems with Unknown Time-Delays ». 
preprints of the 18th ifac world congress, Milano (Italy) August 28 -
September 2, 2011. 

 

[12] P. Van Overschee, and B. De Moor, N4SID: «  Subspace algorithms 
for identification of combined Deterministicstochastic Systems », 
Automatica, , Vol. 30, pp. 75-93,1994.

 
 

PC1
Texte tapé à la machine
Copyright 2019
ISSN 2356-5608

PC1
Texte tapé à la machine
International Journal of Control, Energy and Electrical Engineering (CEEE)
Vol.8 pp.7-11

PC1
Texte tapé à la machine
11


	I.   Introduction
	III.  Multimodel LQG Control design



